Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur Rev Med Pharmacol Sci ; 27(1): 366-377, 2023 01.
Article in English | MEDLINE | ID: covidwho-2234678

ABSTRACT

OBJECTIVE: This review aims to determine whether there is considerable evidence that mouthwashes containing chlorhexidine (CHX) lower the COVID-19 virus load in saliva. MATERIALS AND METHODS: A comprehensive literature search was carried out in PubMed/Medline, EMBASE, LILACS, Scopus, Web of Science and Cochrane Library, Google Scholar, Open Gray, and ProQuest electronic databases using the keywords: "coronavirus infections" or "coronavirus" or "covid 2019" or "sars 2" or "sars-cov-2" or "sars-cov-19" or "severe acute respiratory syndrome coronavirus 2" or "coronavirus infection" or "severe acute respiratory pneumonia outbreak" and "CHX" or "CHX Hydrochloride" or "CHX Digluconate." A manual search of the articles was also conducted utilizing the reference lists of articles. The in vitro experimental and clinical studies that tested CHX mouthwash were included. Study selection was not restricted or limited to a specific gender, age, ethnicity of individuals, or time of publication. A mix of keywords and proper truncations were used to search for databases. RESULTS: Twelve studies (7 clinical and 5 in vitro) published between 2020 and 2021 were included in this systemic review. Five randomized controlled trials and one clinical case series demonstrated the effectiveness of CHX in reducing the oral viral load; one was inconclusive. Of the five in vitro studies, three showed that CHX is effective against SARS-CoV-2, and two studies denied the effectiveness of CHX. All in vitro studies tested CHX activity concentrations of 0.2, 0.12, and 0.1%. One study reported more than a 99.9% reduction in SARS-CoV-2 viral load in a minimal contact time of 30 seconds. CHX exhibited potent antiviral activity at higher concentrations without cytotoxicity. CONCLUSIONS: Despite differences in the published research, CHX at different concentrations may be effective in lowering the SARS-COV-2 viral load in saliva.


Subject(s)
COVID-19 , Chlorhexidine , Humans , Chlorhexidine/pharmacology , Chlorhexidine/therapeutic use , Mouthwashes , SARS-CoV-2 , Viral Load
2.
PLoS One ; 17(6): e0269850, 2022.
Article in English | MEDLINE | ID: covidwho-1910664

ABSTRACT

The incidence of hospital- and community-acquired infections has been dramatically increased worldwide. Accordingly, hands hygiene and the use of disinfectants have been increased leading to the expansion in hand sanitizers production to meet public demand. This study was conducted to assess the efficiency of common disinfectants in the market of Riyadh, Saudi Arabia in inhibiting the microbial growth during the time of Coronavirus disease 2019 (COVID-19) pandemic. Five bacterial strains of commonly hospital-acquired infections (Pseudomonas aeruginosa, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, and Enterococcus faecalis) (ATCC reference strains and clinical isolates) were examined for their susceptibility against 18 disinfectants collected from the Saudi market. The tested 18 disinfectants were broadly clustered into different groups based on their active chemical composition as following: 12 products contained alcohol, 2 products had chlorhexidine, 3 products contained mixed concentration of alcohol/chlorhexidine and 1 product had a mixture of chlorhexidine/Hexamidine/Chlorocresol. By measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), our results revealed that all the 18 disinfectants have reduced the microbial growth of all the tested strains. Generally, the MICs and the MBCs for the clinical strains are higher than those of the reference strains. Taken together, our findings showed that all tested products have high disinfectants' killing rate against microbes of different origins, which suggest the high quality of these disinfectants and the good surveillance practice by the local authorities in Saudi Arabia.


Subject(s)
COVID-19 , Disinfectants , Hand Sanitizers , COVID-19/prevention & control , Chlorhexidine/pharmacology , Disinfectants/pharmacology , Escherichia coli , Hand Sanitizers/pharmacology , Humans , Sterilization
3.
Odontology ; 110(2): 376-392, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1750724

ABSTRACT

This study aimed to systematically review the literature about the virucidal efficacy of CHX in comparison to other substances used in the oral cavity. Electronic searches were performed in four databases (PubMed, Scopus, Embase, and Web of Science). Only studies that presented the following characteristics were included: (1) verified virucidal efficacy of CHX against Herpes Simplex Type-1 (HSV-1), any Influenza, or any human coronavirus (HcoV); and (2) compared the virucidal efficacy of CHX with essential oils (Listerine®), quaternary ammonium compounds, povidone-iodine, hydrogen peroxide, negative control substance, and absence of therapy. Two researchers independently selected the studies, extracted data and evaluated the risk of bias. A narrative data synthesis was used. Twenty-five studies were included, of which 21 were in vitro and four were randomized clinical trials (RCT). Studies assessed the virucidal efficacy of CHX against Herpes Simplex Type-1 (HSV-1) (10 studies), Influenza A (InfluA) (4 studies), human coronavirus (HCoV) (4 studies) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV-2) (11 studies). Most studies demonstrated that CHX has a positive virucidal efficacy against HSV-1 and InfluA strains. However, lower efficacy was shown to InfluA strain in comparison to povidone-iodine. Lower to none virucidal efficacy of CHX is expected for HCoV and SARS-CoV-2 strains for in vitro studies. Three RCT demonstrated that CHX was able to significantly reduce the viral load of SARS-CoV-2 for a short period. CHX may present an interesting virucidal efficacy against HSV-1 and InfluA viruses. CHX also presents transient efficacy against SARS-CoV-2 when used as a mouthwash.


Subject(s)
COVID-19 , Chlorhexidine , Chlorhexidine/pharmacology , Humans , Mouthwashes/pharmacology , Povidone-Iodine , SARS-CoV-2
4.
Sci Rep ; 12(1): 2803, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1735270

ABSTRACT

The COVID-19 pandemic has demonstrated the real need for mechanisms to control the spread of airborne respiratory pathogens. Thus, preventing the spread of disease from pathogens has come to the forefront of the public consciousness. This has brought an increasing demand for novel technologies to prioritise clean air. In this study we report on the efficacy of novel biocide treated filters and their antimicrobial activity against bacteria, fungi and viruses. The antimicrobial filters reported here are shown to kill pathogens, such as Candida albicans, Escherichia coli and MRSA in under 15 min and to destroy SARS-CoV-2 viral particles in under 30 s following contact with the filter. Through air flow rate testing, light microscopy and SEM, the filters are shown to maintain their structure and filtration function. Further to this, the filters are shown to be extremely durable and to maintain antimicrobial activity throughout the operational lifetime of the product. Lastly, the filters have been tested in field trials onboard the UK rail network, showing excellent efficacy in reducing the burden of microbial species colonising the air conditioning system.


Subject(s)
Air Filters/microbiology , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Air Filters/virology , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Candida albicans/drug effects , Chlorhexidine/analogs & derivatives , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Escherichia coli/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , SARS-CoV-2/drug effects , Time Factors
5.
Biomed Res Int ; 2021: 2610122, 2021.
Article in English | MEDLINE | ID: covidwho-1484095

ABSTRACT

OBJECTIVES: In this study, the cytotoxic responses of six different over-the-counter mouthwashes on L929 cells were analyzed by two different techniques: the traditional colorimetric tetrazolium-based reduction assay (MTT) and the modern impedance-based real-time cell analysis (RTCA) system to investigate their biocompatibility in vitro. Thus, the investigation of the antiproliferative effects of the specified materials via different techniques is vital to reach this goal. MATERIALS AND METHODS: First, L929 mouse fibroblasts were exposed to the dilutions of mouthwashes for 2 minutes. After incubation, the tetrazolium reduction method was used to assess the metabolic viability of cells measured by colorimetric MTT assay and morphological inspection of cells was performed via phase-contrast microscopy. Furthermore, the effect of each mouthwash on the proliferation, morphology, and adhesion of L929 cells was monitored continuously by a noninvasive and label-free RTCA system for 140 h. RESULTS: Our data showed that all of the mouthwashes had varying cytotoxic effects on fibroblasts compared to the control group in MTT assay. In addition to that, RTCA technology has provided the growth kinetic profiles that can be used to analyze if the treatment is causing antimitotic or DNA-damaging effect on cells. Thus, analysis via this system can tell us the mechanism of toxicity behind the cell growth inhibition in vitro. Here, we found that only mouthwash 1 moderately maintained the viability of the L929 cells, yet displaying antimitotic effects and the other mouthwashes (mouthwash 2-mouthwash 6) showed toxicity via DNA-damaging effects. CONCLUSIONS: Of the six types of mouthwash tested, the most biocompatible result was obtained from a mouthwash containing alcohol (i.e., mouthwash 1). On the other hand, sodium fluoride- (NaF-) and cetylpyridinium chloride- (CPC-) containing mouthwash (i.e., mouthwash 2) showed the most cytotoxic effect.


Subject(s)
Cetylpyridinium/pharmacology , Chlorhexidine/pharmacology , Ethanol/pharmacology , Mouthwashes/pharmacology , Sodium Fluoride/pharmacology , Animals , Anti-Infective Agents, Local/pharmacology , Cariostatic Agents/pharmacology , Cell Line , Cell Proliferation/drug effects , Mice , Mouthwashes/chemistry
6.
Int Orthod ; 19(4): 685-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472124

ABSTRACT

OBJECTIVE: In orthodontic patients using any chemical substances in oral environment could change the elastomeric properties of their appliances. Since the beginning of the SARS-CoV-2 pandemic, efforts have been devoted to explore methods of prevention including the use of antiviral mouthwashes. This study aimed to investigate the effects of Povidone Iodine (PVP-I) and two other disinfecting solutions on the mechanical properties of orthodontic elastomeric ligatures. MATERIALS AND METHODS: In this study, 130 elastomeric ligatures in five groups (three test groups and two control groups) were examined in laboratory conditions for a period of 28 days. In the control group, specimens were kept dry in a dark environment while all other ligatures were stored in artificial saliva. Elastomeric ligatures were immersed into PVP-I solution (1%) Chlorhexidine (0.02%), and hydrogen peroxide (5%) for one minute each day in three time intervals of one day, 7 days and 28 days. Next, the maximum tensile strength of elastomeric ligatures was tested by a universal testing machine (CN 1174, Germany). RESULTS: The results showed that the tensile strength of elastomeric ligatures was significantly decreased in all three test groups after 28 days (p-value<0.05). However, the difference between groups was not statistically significant. Between-subject ANOVA test showed that there were significant correlations between the time of exposure and type of disinfecting solutions. CONCLUSIONS: PVP-I has comparable effects on elastomeric ligatures as artificial saliva, chlorhexidine, and hydrogen peroxide.


Subject(s)
Chlorhexidine/pharmacology , Hydrogen Peroxide/pharmacology , Orthodontic Appliances , Povidone-Iodine/pharmacology , Tensile Strength/drug effects , COVID-19 , Elastomers , Humans , Materials Testing , SARS-CoV-2 , Saliva, Artificial
7.
Rev Assoc Med Bras (1992) ; 66Suppl 2(Suppl 2): 124-129, 2020.
Article in English | MEDLINE | ID: covidwho-1390138

ABSTRACT

An alarming fact was revealed by recent publications concerning disinfectants: chlorhexidine digluconate is ineffective for disinfecting surfaces contaminated by the new coronavirus. This is a finding that requires immediate disclosure since this substance is widely used for the disinfection of hands and forearms of surgeons and auxiliaries and in the antisepsis of patients in minimally invasive procedures commonly performed in hospital environments. The objective of this study is to compare the different disinfectants used for disinfection on several surfaces, in a review of worldwide works. Scientific studies were researched in the BVS (Virtual Health Library), PubMed, Medline, and ANVISA (National Health Surveillance Agency) databases. The following agents were studied: alcohol 62-71%, hydrogen peroxide 0.5%, sodium hypochlorite 0.1%, benzalkonium chloride 0.05-0.2%, povidone-iodine 10%, and chlorhexidine digluconate 0.02%, on metal, aluminum, wood, paper, glass, plastic, PVC, silicone, latex (gloves), disposable gowns, ceramic, and Teflon surfaces. Studies have shown that chlorhexidine digluconate is ineffective for inactivating some coronavirus subtypes, suggesting that it is also ineffective to the new coronavirus.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Chlorhexidine/pharmacology , Coronavirus/drug effects , Disinfectants/pharmacology , Povidone-Iodine/pharmacology , Coronavirus Infections/epidemiology , Disinfection , Humans , Pandemics , Pneumonia, Viral/epidemiology
8.
J Evid Based Dent Pract ; 21(3): 101584, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316531

ABSTRACT

OBJECTIVES: The oral cavity is potentially high-risk transmitter of COVID-19. Antimicrobial mouthrinses are used in many clinical preprocedural situations for decreasing the risk of cross-contamination in the dental setting. It is important to investigate the efficacy of mouthwash solutions against salivary SARS-CoV-2 in order to reduce the exposure of the dental team during dental procedures. AIMS: The aim of this in vivo study was to evaluate the efficacy of 2 preprocedural mouthrinses in the reduction of salivary SARS-CoV-2 viral load and to compare the results of the mouthwashes to a control group. MATERIALS AND METHODS: In this randomized-controlled clinical trial, studied group comprised laboratory-confirmed COVID-19 positive patients through nasopharyngeal swabs. Participants were divided into 3 groups. For 30 s, the control group mouthrinsed with distilled water, the Chlorhexidine group mouthrinsed with 0.2% Chlorhexidine and the Povidone-iodine group gargled with 1% Povidone-iodine. Saliva samples were collected before and 5 min after mouthwash. SARS-CoV-2 rRT-PCR was then performed for each sample. Evaluation of the efficacy was based on difference in cycle threshold (Ct) value. The analysis of data was carried out using GraphPad Prism version 5 for Windows. Kristal wullis and Paired t-test were used. A probability value of less than 0.05 was regarded as statistically significant. RESULTS: Sixty-one compliant participants (36 female and 25 male) with a mean age 45.3 ± 16.7 years-old were enrolled. A significant difference was noted between the delta Ct of distilled water wash and each of the 2 solutions Chlorhexidine 0.2% (P = .0024) and 1% Povidone-iodine (P = .012). No significant difference was found between the delta Ct of patients using Chlorhexidine 0.2% and 1% Povidone-iodine solutions (P = .24). A significant mean Ct value difference (P < .0001) between the paired samples in Chlorhexidine group (n = 27) and also in Povidone-iodine group (n = 25) (P < .0001) was found. In contrast, no significant difference (P = .566) existed before and after the experiment in the control group (n = 9). CONCLUSION: Chlorhexidine 0.2% and 1% Povidone-iodine oral solutions are effective preprocedural mouthwashes against salivary SARS-CoV-2 in dental treatments. Their use as a preventive strategy to reduce the spread of COVID-19 during dental practice should be considered.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Adult , Anti-Infective Agents, Local/pharmacology , Chlorhexidine/pharmacology , Female , Humans , Male , Middle Aged , Mouthwashes/pharmacology , Povidone-Iodine/pharmacology , SARS-CoV-2
9.
Clin Microbiol Infect ; 27(7): 1042.e1-1042.e4, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1201418

ABSTRACT

OBJECTIVES: Disinfection effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on human skin remains unclear because of the hazards of viral exposure. An evaluation model, which has been previously generated using human skin obtained from forensic autopsy samples, accurately mimics in vivo skin conditions for evaluating the effectiveness of disinfection against the virus. Using this model, we evaluated disinfection effectiveness against viruses on human skin. METHODS: Ethanol (EA), isopropanol (IPA), chlorhexidine gluconate (CHG) and benzalkonium chloride (BAC) were used as target disinfectants. First, disinfectant effectiveness against SARS-CoV-2 and influenza A virus (IAV) was evaluated in vitro. Disinfectant effectiveness against SARS-CoV-2 and IAV on human skin was then evaluated by titrating viruses present on the skin after applying each disinfectant on the skin for 5-60 seconds. RESULTS: Both, SARS-CoV-2 and IAV on human skin were completely inactivated within 5 seconds by 40%-80% EA and 70% IPA (log reduction values (LRVs) were >4). However, SARS-CoV-2 and IAV were barely inactivated by 20% EA (LRVs were <1). In vitro evaluation showed that, compared with EA and IPA, CHG and BAC were significantly inferior in terms of disinfection effectiveness. Conversely, the disinfection effectiveness of CHG and BAC against SARS-CoV-2 was higher on human skin than in vitro, and increased with increases in their concentration and reaction time (LRVs of 0.2% CHG/0.05% BAC were >2, and LRVs of 1.0% CHG/0.2% BAC were >2.5). CONCLUSIONS: Proper hand hygiene practices using alcohol-based disinfectants such as EA/IPA effectively inactivate SARS-CoV-2 and IAV on human skin.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , SARS-CoV-2/drug effects , 2-Propanol/pharmacology , Anti-Infective Agents, Local/pharmacology , Benzalkonium Compounds/pharmacology , COVID-19/virology , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Ethanol/pharmacology , Hand Hygiene/methods , Humans , Models, Biological , Skin/virology
SELECTION OF CITATIONS
SEARCH DETAIL